

Data Sheet FN7497.4

High Supply Voltage 200MHz Unity-Gain Stable Operational Amplifier

The ISL55002 is a high speed, low power, low cost monolithic operational amplifier. The ISL55002 is unity-gain stable and features a 300V/ μ s slew rate and 200MHz bandwidth while requiring only 8.5mA of supply current per amplifier.

The power supply operating range of the ISL55002 is from ± 15 V down to ± 2.5 V. For single-supply operation, the ISL55002 operates from 30V down to 5V.

The ISL55002 also features an extremely wide output voltage swing of -12.75V/+13.4V with $V_S = \pm 15V$ and $R_L = 1k\Omega$.

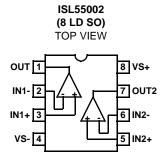
At a gain of +1, the ISL55002 has a -3dB bandwidth of 200MHz with a phase margin of 55°. Because of its conventional voltage-feedback topology, the ISL55002 allow the use of reactive or non-linear elements in its feedback network. This versatility combined with low cost and 140mA of output-current drive makes the ISL55002 an ideal choice for price-sensitive applications requiring low power and high speed.

The ISL55002 is available in an 8 Ld SO package and is specified for operation over the full -40°C to +85°C temperature range.

Ordering Information

PART NUMBER	PART MARKING	TAPE & REEL	PACKAGE	PKG. DWG. #
ISL55002IB	55002IB	-	8 Ld SO	MDP0027
ISL55002IB-T7	55002IB	7"	8 Ld SO	MDP0027
ISL55002IB-T13	55002IB	13"	8 Ld SO	MDP0027
ISL55002IBZ (See Note)	55002IBZ	-	8 Ld SO (Pb-Free)	MDP0027
ISL55002IBZ-T7 (See Note)	55002IBZ	7"	8 Ld SO (Pb-Free)	MDP0027
ISL55002IBZ-T13 (See Note)	55002IBZ	13"	8 Ld SO (Pb-Free)	MDP0027

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.


Features

- 200MHz -3dB bandwidth
- · Unity-gain stable
- · Low supply current: 8.5mA per amplifier
- Wide supply range: ±2.5V to ±15V dual-supply and 5V to 30V single-supply
- High slew rate: 300V/µs
- Fast settling: 75ns to 0.1% for a 10V step
- Wide output voltage swing: -12.75V/+13.4V with $V_S = \pm 15V$, $R_I = 1k\Omega$
- Enhanced replacement for EL2244
- · Pb-free plus anneal available (RoHS compliant)

Applications

- · Video amplifiers
- · Single-supply amplifiers
- · Active filters/integrators
- High speed sample-and-hold
- · High speed signal processing
- ADC/DAC buffers
- Pulse/RF amplifiers
- · Pin diode receivers
- Log amplifiers
- · Photo multiplier amplifiers
- · Difference amplifiers

Pinout

Absolute Maximum Ratings (T_A = 25°C)

Supply Voltage (V _S)±16.5V or 33V	Power Dissipation (P _D) See Curves
Input Voltage (V _{IN)} ±V _S	Operating Temperature Range (T _A)40°C to +85°C
Differential Input Voltage (dV _{IN})±10V	Operating Junction Temperature (T _J) +150°C
Continuous Output Current	Storage Temperature (T _{ST})65°C to +150°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

DC Electrical Specifications $V_S = \pm 15V$, $A_V = +1$, $R_L = 1k\Omega$, $T_A = 25$ °C, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITION	MIN	TYP	MAX	UNIT
Vos	Input Offset Voltage	$V_S = \pm 15V$		1.2	5	mV
TCV _{OS}	Average Offset Voltage Drift (Note 1)	-40°C to +85°C		17		μV/°C
I _B	Input Bias Current	$V_S = \pm 15V$		0.6	3.5	μΑ
Ios	Input Offset Current	V _S = ±15V		0.2	2	μΑ
TCIOS	Average Offset Current Drift (Note 1)			0.2		nA/°C
A _{VOL}	Open-loop Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$, $R_L = 1k\Omega$	12000	21000		V/V
PSRR	Power Supply Rejection Ratio	$V_S = \pm 5V \text{ to } \pm 15V$	75	100		dB
CMRR	Common-mode Rejection Ratio	V _{CM} = ±10V, V _{OUT} = 0V	75	90		dB
CMIR	Common-mode Input Range	$V_S = \pm 15V$		13		V
V _{OUT}	Output Voltage Swing	V_O+ , $R_L = 1k\Omega$	13.25	13.4		V
		V_{O} -, $R_{L} = 1k\Omega$	-12.6	-12.75		V
		V_O+ , $R_L = 150\Omega$	9.6	10.7		V
		V_{O} -, $R_L = 150\Omega$	-8.3	-9.4		V
I _{SC}	Output Short Circuit Current		80	140		mA
Is	Supply Current (per amplifier)	$V_S = \pm 15V$, no load		8.5	9.25	mA
R _{IN}	Input Resistance		2.0	3.2		МΩ
C _{IN}	Input Capacitance	A _V = +1		1		pF
R _{OUT}	Output Resistance	A _V = +1		50		mΩ
PSOR	Power Supply Operating Range	Dual supply	±2.25		±15	V
		Single supply	4.5		30	V

NOTE:

AC Electrical Specifications $V_S = \pm 15V$, $A_V = +1$, $R_L = 1k\Omega$, $T_A = 25^{\circ}C$, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITION	MIN	TYP	MAX	UNIT
BW	-3dB Bandwidth (V _{OUT} = 0.4V _{PP})	V _S = ±15V, A _V = +1		200		MHz
		$V_S = \pm 15V, A_V = -1$		50		MHz
		$V_S = \pm 15V, A_V = +2$		50		MHz
		$V_S = \pm 15V, A_V = +5$		17		MHz
GBWP	Gain Bandwidth Product	V _S = ±15V		70		MHz
PM	Phase Margin	$R_L = 1k\Omega$, $C_L = 5pF$		55		٥
SR	Slew Rate (Note 1)		260	300		V/µs

^{1.} Measured from $T_{\mbox{\scriptsize MIN}}$ to $T_{\mbox{\scriptsize MAX}}.$

AC Electrical Specifications $V_S = \pm 15 V$, $A_V = +1$, $R_L = 1 k \Omega$, $T_A = 25 ^{\circ} C$, unless otherwise specified. (Continued)

PARAMETER	DESCRIPTION	CONDITION	MIN	TYP	MAX	UNIT
FPBW	Full-power Bandwidth (Note 2)	V _S = ±15V		9.5		MHz
t _S	Settling to +0.1% (A _V = +1)	V _S = ±15V, 10V step		75		ns
dG	Differential Gain (Note 3)	NTSC/PAL		0.01		%
dP	Differential Phase	NTSC/PAL		0.05		۰
eN	Input Noise Voltage	10kHz		12		nV/√Hz
iN	Input Noise Current	10kHz		1.5		pA/√Hz

NOTES:

- 1. Slew rate is measured on rising edge.
- 2. For V_S = ±15V, V_{OUT} = 10V_{PP}, for V_S = ±5V, V_{OUT} = 5V_{PP}. Full-power bandwidth is based on slew rate measurement using FPBW = SR/(2π * V_{PEAK}).
- 3. Video performance measured at $V_S = \pm 15V$, $A_V = \pm 2$ with two times normal video level across $R_L = 150\Omega$. This corresponds to standard video levels across a back-terminated 75 Ω load. For other values or R_L , see curves.

Typical Performance Curves

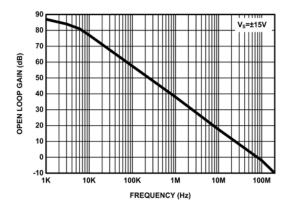


FIGURE 1. OPEN-LOOP GAIN vs FREQUENCY

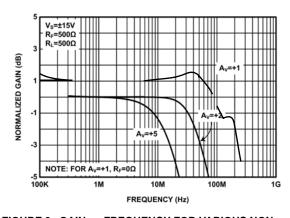


FIGURE 3. GAIN vs FREQUENCY FOR VARIOUS NON-INVERTING GAIN SETTINGS

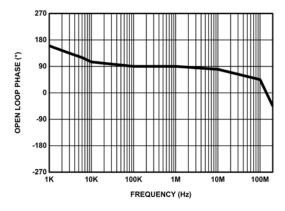
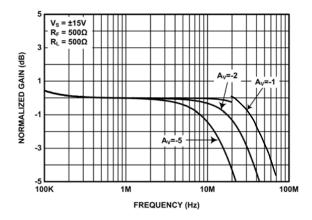
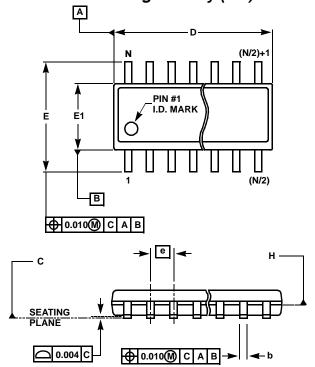
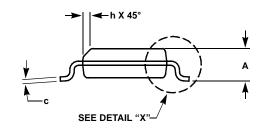
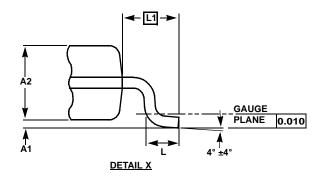


FIGURE 2. OPEN-LOOP PHASE vs FREQUENCY


FIGURE 4. GAIN VS FREQUENCY FOR VARIOUS INVERTING GAIN SETTINGS

intersil FN7497.4

Small Outline Package Family (SO)

MDP0027

SMALL OUTLINE PACKAGE FAMILY (SO)

SYMBOL	SO-8	SO-14	SO16 (0.150")	SO16 (0.300") (SOL-16)	SO20 (SOL-20)	SO24 (SOL-24)	SO28 (SOL-28)	TOLERANCE	NOTES
Α	0.068	0.068	0.068	0.104	0.104	0.104	0.104	MAX	-
A1	0.006	0.006	0.006	0.007	0.007	0.007	0.007	±0.003	-
A2	0.057	0.057	0.057	0.092	0.092	0.092	0.092	±0.002	-
b	0.017	0.017	0.017	0.017	0.017	0.017	0.017	±0.003	-
С	0.009	0.009	0.009	0.011	0.011	0.011	0.011	±0.001	-
D	0.193	0.341	0.390	0.406	0.504	0.606	0.704	±0.004	1, 3
E	0.236	0.236	0.236	0.406	0.406	0.406	0.406	±0.008	=
E1	0.154	0.154	0.154	0.295	0.295	0.295	0.295	±0.004	2, 3
е	0.050	0.050	0.050	0.050	0.050	0.050	0.050	Basic	=
L	0.025	0.025	0.025	0.030	0.030	0.030	0.030	±0.009	=
L1	0.041	0.041	0.041	0.056	0.056	0.056	0.056	Basic	=
h	0.013	0.013	0.013	0.020	0.020	0.020	0.020	Reference	-
N	8	14	16	16	20	24	28	Reference	-

Rev. L 2/01

NOTES:

- 1. Plastic or metal protrusions of 0.006" maximum per side are not included.
- 2. Plastic interlead protrusions of 0.010" maximum per side are not included.
- 3. Dimensions "D" and "E1" are measured at Datum Plane "H".
- 4. Dimensioning and tolerancing per ASME Y14.5M-1994